Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.092$
Data-to-parameter ratio $=11.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[4,4'-bipyridinium [[diaquadisulfato-manganate(II)]- $\mu-4,4^{\prime}$-bipyridine- $\left.\kappa^{2} N: N^{\prime}\right]$ dihydrate]

The title complex, $\left\{\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of an anionic one-dimensional chain, diprotonated $4,4^{\prime}$-bipyridine cations and uncoordinated water molecules. In the anionic chain, the Mn atom lies on a center of inversion in an octahedral geometry. Hydrogen bonds link the chains into a three-dimensional architecture.

Comment

Recently, a great number of transition metal complexes with 4,4'-bipyridine (4,4'-bipy) and sulfate have been reported; they produce many interesting architectures, such as one-dimensional (Norquist et al., 2003), two-dimensional (Huang et al., 1998) and three-dimensional (Huang et al., 1999; Hou et al., 2001; Xu et al., 2003) polymers or cation-anion complexes (Li et al., 2004). In these complexes, the sulfate can exist as a bridging (Tong et al., 2000) or monodentate (Kondo et al., 1999) ligand, or an uncoordinated anion (Li et al., 2004). 4,4'Bipy also can act as a bridging ligand (Hagrman et al., 1998) or a proton acceptor (Noro et al., 1999). We present here a manganese complex, (I), with monodentate $\mathrm{SO}_{4}{ }^{2-}$ and doubly protonated $4,4^{\prime}$-bipy ligands.

Received 27 July 2005 Accepted 28 July 2005 Online 6 August 2005

(I)

The title complex consists of an anionic $\left\{\left[\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}\left(4,4^{\prime}-\right.\right.\right.$ bipy $\left.\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}\right\}_{n}$ chain, 4,4'-bipyridinium cations and uncoordinated water molecules (Fig. 1 and Table 1). In the anionic chain (Fig. 2), each Mn atom, sitting on a special position of $\overline{1}$ site symmetry, adopts an octahedral geometry defined by two N donors from two 4,4'-bipy ligands, two O atoms from two sulfate anions, and two O atoms from two water molecules. Each sulfate acts as a monodentate ligand and this is the first example of an anionic chain with monodentate $\mathrm{SO}_{4}{ }^{2-}$ in the system $M^{2+}-\mathrm{SO}_{4}{ }^{2-}-4,4^{\prime}$-bipy; the $\mathrm{Mn} \cdots \mathrm{Mn}$ separation is 11.7768 (10) \AA. The one-dimensional chains are hold together by hydrogen-bondng interactions to give a three-dimensional network through three kinds of donors, O6, O5, and N2 (Table 2). The 4,4'-bipyridinium cation with the neighboring

Figure 1
A view of a segment of (I). Displacement ellipsoids are drawn at the 50\% probability level. [Symmetry codes: (i) $2-x, 2-y, 2-z$; (ii) $1-x, 1-y$, $1-z$; (iii) $2-x, 3-y, 1-z$; (iv) $x,-1+y, 1+z$.]
$4,4^{\prime}$-bipy in the one-dimensional chain forms $\pi-\pi$ interactions with a distance of about $3.47 \AA$ and a dihedral angle of 5.41 (6) ${ }^{\circ}$. Therefore, in the crystal packing, hydrogen bonds and $\pi-\pi$ interactions enhance the stability of the structure.

Experimental

A mixture of $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.085 \mathrm{~g}, 0.50 \mathrm{mmol})$ and 5 -sulfosalicylic acid dihydrate $(0.125 \mathrm{~g}, 0.49 \mathrm{mmol})$ in water $(15 \mathrm{ml})$ was added to a previously prepared solution of $4,4^{\prime}$-bipyridine ($0.078 \mathrm{~g}, 0.50 \mathrm{mmol}$) in dimethylformamide (10 ml) under stirring. The resulting solution was set aside and the solvents allowed to evaporate. After two weeks, pale-yellow needle-shaped crystals of (I) were obtained and collected by suction filtration.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=633.51$
Triclinic, $P \overline{1}$
$a=6.9619(8) \AA$
$b=9.3723(11) \AA$
$c=9.9791(11) \AA$
$\alpha=74.900(2)^{\circ}$
$\beta=89.418(2)^{\circ}$
$\gamma=78.241(2)^{\circ}$
$V=614.82(12) \AA^{\circ}$

Data collection
Bruker APEX area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2002)
$T_{\text {min }}=0.730, T_{\text {max }}=0.892$
4433 measured reflections

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.711 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3372 \\
& \quad \text { reflections } \\
& \theta=2.3-28.1^{\circ} \\
& \mu=0.78 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Needle, pale yellow } \\
& 0.43 \times 0.17 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

> 2144 independent reflections
> 2101 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.014$
> $\theta_{\max }=25.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-11 \rightarrow 11$
> $l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.092$
$S=1.17$
2144 reflections
193 parameters
H -atom parameters constrained

Figure 2
A view of the anionic chain in (I). Hydrogen bonds are shown as dashed lines.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Mn1-O1	2.1453 (17)	S1-O2	1.4629 (19)
Mn1-O5	2.2117 (18)	S1-O3	1.471 (2)
Mn1-N1	2.334 (2)	S1-O4	1.469 (2)
S1-O1	1.4776 (18)		
$\mathrm{O} 1^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 1$	180	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	180
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	86.85 (7)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	110.94 (12)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 5$	93.15 (7)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	109.11 (12)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5$	180	O4-S1-O3	108.75 (14)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	86.17 (7)	O2-S1-O1	110.66 (11)
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	89.78 (7)	O4-S1-O1	108.30 (12)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	93.83 (7)	O3-S1-O1	109.04 (11)
O5-Mn1-N1	90.22 (7)		

Symmetry code: (i) $-x+2,-y+2,-z+2$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6A \cdots O 4	0.86 (3)	1.98 (3)	2.792 (3)	156 (3)
O5-H5A $\cdots{ }^{\text {O }}{ }^{\text {v }}$	0.85 (1)	1.92 (1)	2.762 (3)	174 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.85 (3)	2.01 (2)	2.809 (3)	156 (3)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 2^{\text {vi }}$	0.86 (1)	2.12 (1)	2.952 (3)	164 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {vii }}$	0.90 (1)	1.69 (1)	2.584 (3)	172 (3)

H atoms on C atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms on N and O atoms were located in a difference Fourier map and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{N}-\mathrm{H}=0.90$ (1) \AA, and with a fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hagrman, D., Hammond, R. P., Haushalter, R. \& Zubieta, J. (1998). Chem. Mater. 10, 2091-2100.
Hou, H. W., Wei, Y. L., Fan, Y. T., Du, C. X., Zhu, Y., Song, Y. L., Niu, Y. Y. \& Xin, X. Q. (2001). Inorg. Chim. Acta, 319, 212-218.
Huang, S. P. D., Xiong, R. G., Han, J. D. \& Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.
Huang, S. P. D., Xiong, R. G. \& Sotero, P. H. (1998). J. Solid State Chem. 138, 361-364.

metal-organic papers

Kondo, M., Shimamura, M., Noro, S., Yoshitomi, T., Minakoshi, S. \& Kitagawa, S. (1999). Chem. Lett. pp. 285-286.

Li, X.-H., Miao, Q., Xiao, H.-P. \& Hu, M.-L. (2004). Acta Cryst. E60, m1784m1785.
Noro, S., Kondo, M., Kitagawa, S., Ishii, T. \& Matsuzaka, H. (1999). Chem. Lett. pp. 727-728.

Norquist, A. J., Doran, M. B., Thomas, P. M. \& O'Hare, D. (2003). Dalton Trans. pp. 1168-1175.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tong, M. L. \& Chen, X. M. (2000). CrystEngComm, 2, 1-5.
Xu, Y., Bi, W. H., Li, X., Sun, D. F., Cao, R. \& Hong, M. C. (2003). Inorg. Chem. Commun. 6, 495-497.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

