Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.092 Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[4,4'-bipyridinium [[diaquadisulfatomanganate(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$] dihydrate]

The title complex, $\{(C_{10}H_{10}N_2)[Mn(SO_4)_2(C_{10}H_8N_2)(H_2O)_2]$ -2H₂O}_n, consists of an anionic one-dimensional chain, diprotonated 4,4'-bipyridine cations and uncoordinated water molecules. In the anionic chain, the Mn atom lies on a center of inversion in an octahedral geometry. Hydrogen bonds link the chains into a three-dimensional architecture.

Received 27 July 2005 Accepted 28 July 2005 Online 6 August 2005

Comment

Recently, a great number of transition metal complexes with 4,4'-bipyridine (4,4'-bipy) and sulfate have been reported; they produce many interesting architectures, such as one-dimensional (Norquist *et al.*, 2003), two-dimensional (Huang *et al.*, 1998) and three-dimensional (Huang *et al.*, 1999; Hou *et al.*, 2001; Xu *et al.*, 2003) polymers or cation–anion complexes (Li *et al.*, 2004). In these complexes, the sulfate can exist as a bridging (Tong *et al.*, 2000) or monodentate (Kondo *et al.*, 1999) ligand, or an uncoordinated anion (Li *et al.*, 2004). 4,4'-Bipy also can act as a bridging ligand (Hagrman *et al.*, 1998) or a proton acceptor (Noro *et al.*, 1999). We present here a manganese complex, (I), with monodentate SO_4^{2-} and doubly protonated 4,4'-bipy ligands.

The title complex consists of an anionic { $[Mn(SO_4)_2(4,4'-bipy)(H_2O)_2]^{2-}_n$ chain, 4,4'-bipyridinium cations and uncoordinated water molecules (Fig. 1 and Table 1). In the anionic chain (Fig. 2), each Mn atom, sitting on a special position of $\overline{1}$ site symmetry, adopts an octahedral geometry defined by two N donors from two 4,4'-bipy ligands, two O atoms from two sulfate anions, and two O atoms from two water molecules. Each sulfate acts as a monodentate ligand and this is the first example of an anionic chain with monodentate SO₄²⁻ in the system M^{2+} -SO₄²⁻-4,4'-bipy; the Mn···Mn separation is 11.7768 (10) Å. The one-dimensional chains are hold together by hydrogen-bondng interactions to give a three-dimensional network through three kinds of donors, O6, O5, and N2 (Table 2). The 4,4'-bipyridinium cation with the neighboring

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 2 - x, 3 - y, 1 - z; (iv) x, -1 + y, 1 + z.]

4,4'-bipy in the one-dimensional chain forms $\pi - \pi$ interactions with a distance of about 3.47 Å and a dihedral angle of 5.41 (6) $^{\circ}$. Therefore, in the crystal packing, hydrogen bonds and $\pi - \pi$ interactions enhance the stability of the structure.

Experimental

A mixture of MnSO₄·H₂O (0.085 g, 0.50 mmol) and 5-sulfosalicylic acid dihydrate (0.125 g, 0.49 mmol) in water (15 ml) was added to a previously prepared solution of 4,4'-bipyridine (0.078 g, 0.50 mmol) in dimethylformamide (10 ml) under stirring. The resulting solution was set aside and the solvents allowed to evaporate. After two weeks, pale-yellow needle-shaped crystals of (I) were obtained and collected by suction filtration.

Crystal data

$(C_{10}H_{10}N_2)[Mn(SO_4)_2(C_{10}H_8N_2)-$	Z = 1
$(H_2O)_2]\cdot 2H_2O$	$D_x = 1.711 \text{ Mg m}^{-3}$
$M_r = 633.51$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 3372
a = 6.9619 (8) Å	reflections
b = 9.3723 (11) Å	$\theta = 2.3 - 28.1^{\circ}$
c = 9.9791 (11) Å	$\mu = 0.78 \text{ mm}^{-1}$
$\alpha = 74.900(2)^{\circ}$	T = 295 (2) K
$\beta = 89.418 \ (2)^{\circ}$	Needle, pale yellow
$\gamma = 78.241 \ (2)^{\circ}$	$0.43 \times 0.17 \times 0.15 \text{ mm}$
V = 614.82 (12) Å ³	
Data collection	
Bruker APEX area-detector	2144 independent reflections
diffractometer	2101 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.014$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -8 \rightarrow 8$
$T_{\min} = 0.730, T_{\max} = 0.892$	$k = -11 \rightarrow 11$
4433 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F²) = 0.092 S = 1.172144 reflections 193 parameters H-atom parameters constrained I)

 $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$ + 0.605P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Figure 2

A view of the anionic chain in (I). Hydrogen bonds are shown as dashed lines

Table 1 Selected geometric parameters (Å, °).

Mn1-O1	2.1453 (17)	S1-O2	1.4629 (19)
Mn1-O5	2.2117 (18)	S1-O3	1.471 (2)
Mn1-N1	2.334 (2)	S1-O4	1.469 (2)
S1-O1	1.4776 (18)		
O1 ⁱ -Mn1-O1	180	N1 ⁱ -Mn1-N1	180
O1-Mn1-O5 ⁱ	86.85 (7)	O2-S1-O4	110.94 (12)
O1-Mn1-O5	93.15 (7)	O2-S1-O3	109.11 (12)
O5 ⁱ -Mn1-O5	180	O4-S1-O3	108.75 (14)
O1-Mn1-N1 ⁱ	86.17 (7)	O2-S1-O1	110.66 (11)
O5-Mn1-N1 ⁱ	89.78 (7)	O4-S1-O1	108.30 (12)
O1-Mn1-N1	93.83 (7)	O3-S1-O1	109.04 (11)
O5-Mn1-N1	90.22 (7)		

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6−H6A····O4	0.86 (3)	1.98 (3)	2.792 (3)	156 (3)
$O5-H5A\cdots O4^{v}$	0.85(1)	1.92 (1)	2.762 (3)	174 (3)
$O5-H5B\cdots O2^{i}$	0.85(3)	2.01(2)	2.809 (3)	156 (3)
$O6-H6B\cdots O2^{vi}$	0.86(1)	2.12 (1)	2.952 (3)	164 (3)
$N2-H2A\cdots O3^{vii}$	0.90 (1)	1.69 (1)	2.584 (3)	172 (3)
		a . a ()		

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (v) -x + 1, -y + 2, -z + 2; (vi) -x + 1, -y + 2, -z + 1; (vii) -x + 1, -y + 1, -z + 2.

H atoms on C atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C-H = 0.93 Å and $U_{eq}(H) = 1.2U_{eq}(C)$. H atoms on N and O atoms were located in a difference Fourier map and were refined with distance restraints of O-H = 0.85 (1) Å and N-H = 0.90 (1) Å, and with a fixed isotropic displacement parameter of $U_{iso}(H) = 0.05 \text{ Å}^2$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hagrman, D., Hammond, R. P., Haushalter, R. & Zubieta, J. (1998). Chem. Mater. 10, 2091-2100.
- Hou, H. W., Wei, Y. L., Fan, Y. T., Du, C. X., Zhu, Y., Song, Y. L., Niu, Y. Y. & Xin, X. Q. (2001). Inorg. Chim. Acta, 319, 212-218.
- Huang, S. P. D., Xiong, R. G., Han, J. D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.
- Huang, S. P. D., Xiong, R. G. & Sotero, P. H. (1998). J. Solid State Chem. 138, 361-364.

- Kondo, M., Shimamura, M., Noro, S., Yoshitomi, T., Minakoshi, S. & Kitagawa, S. (1999). Chem. Lett. pp. 285–286.
- Li, X.-H., Miao, Q., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m1784m1785.
- Noro, S., Kondo, M., Kitagawa, S., Ishii, T. & Matsuzaka, H. (1999). Chem. Lett. pp. 727-728.
- Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003). Dalton Trans. pp. 1168-1175.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Tong, M. L. & Chen, X. M. (2000). *CrystEngComm*, **2**, 1–5.
- Xu, Y., Bi, W. H., Li, X., Sun, D. F., Cao, R. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 495–497.